### Per- and Polyfluoroalkyl Substances (PFAS)

AQUA.

Charles D. Hertz, Ph.D.

Schuylkill Water Utility Forum Albright College, Reading, PA September 12, 2018

# **PFAS in Water: outline**

- Introduction
- What are PFAS?
  - History and use
  - Chemistry, nomenclature: per and poly
- Analysis
- Environmental fate
- Occurrence results...after UCMR3
- Health Advisory
  - Regulation of unregulated contaminants
- Risk Communication
- Treatment



# **Introduction to PFAS**

- What are PFAS?
  - Synthetic organic compounds
  - Used in many consumer products
- Where do PFAS come from?
  - Fire-fighting foams
  - Stain-resistant materials
  - Clothing, upholstery, rugs





# **Major Sources of PFAS**

Fire fighting foam/ training & response sites
 Industrial sites

- textile, leather processing
- metal finishers, wire manufacturing
- plating and semiconductor facilities
- paper mills
- 3. Landfills
- 4. Wastewater plants / biosolids





#### **History & Use**



| PFAS <sup>1</sup>                | Development Time Period |                       |                                                  |                      |                       |                      |       |                                                                                   |  |  |  |  |
|----------------------------------|-------------------------|-----------------------|--------------------------------------------------|----------------------|-----------------------|----------------------|-------|-----------------------------------------------------------------------------------|--|--|--|--|
|                                  | 1930s                   | 1940s                 | 1950s                                            | 1960s                | 1970s                 | 1980s                | 1990s | 2000s                                                                             |  |  |  |  |
| PTFE                             | Invented                | Non-Stick<br>Coatings |                                                  |                      | Waterproof<br>Fabrics |                      |       |                                                                                   |  |  |  |  |
| PFOS                             |                         | Initial<br>Production | Stain &<br>Water<br>Resistant<br>Products        | Firefighting<br>foam |                       |                      |       | U.S. Reduction<br>of PFOS, PFOA,<br>PFNA (and other<br>select PFAS <sup>2</sup> ) |  |  |  |  |
| PFOA                             |                         | Initial<br>Production |                                                  | otective<br>batings  |                       |                      |       |                                                                                   |  |  |  |  |
| PFNA                             |                         |                       |                                                  |                      | Initial<br>Production | Architectural Resins |       |                                                                                   |  |  |  |  |
| Fluoro-<br>telomers              |                         |                       |                                                  |                      | Initial<br>Production | Firefighting Foams   |       | Predominant form of firefighting foam                                             |  |  |  |  |
| Dominant<br>Process <sup>3</sup> |                         | Electrochem           | Fluoro-<br>telomerization<br>(shorter chain ECF) |                      |                       |                      |       |                                                                                   |  |  |  |  |



#### Per- and Polyfluoroalkyl Substances (PFAS) Team Contacts

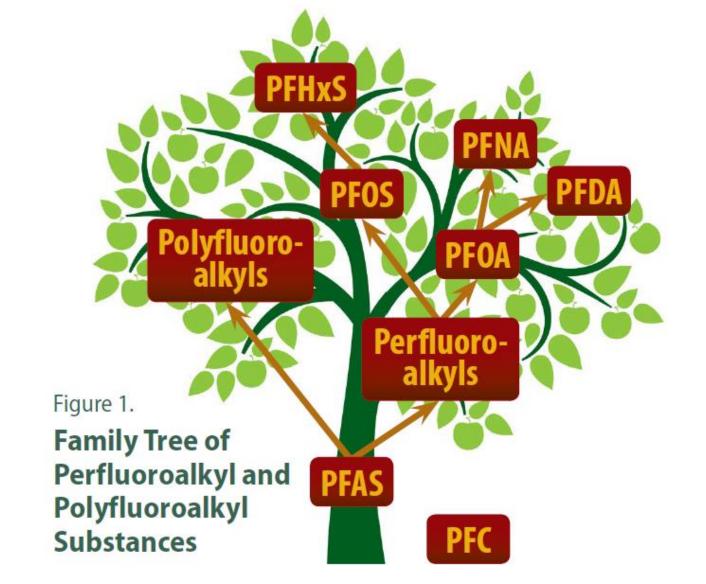
Robert Mueller • New Jersey Department of Environmental Protection 609-984-3910 • Bob.Mueller@dep.nj.gov

> Virginia Yingling • Minnesota Department of Health 651-343-2890 • virginia.yingling@state.mn.us

> > March 2018






50 F St. NW, Suite 350 Washington, DC 20001 itrcweb.org







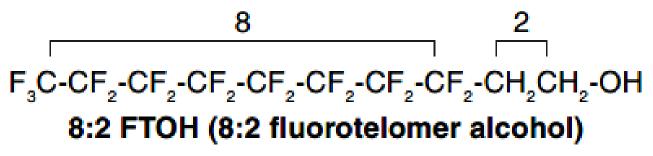
ITRC Disclaimer

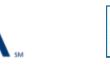




Agency for Toxic Substances and Disease Registry Division of Community Health Investigations




#### Perfluorooctane sulfonate (PFOS)




#### Perfluorooctane carboxylate (PFOA)



#### **Polyfluorinated Substances**





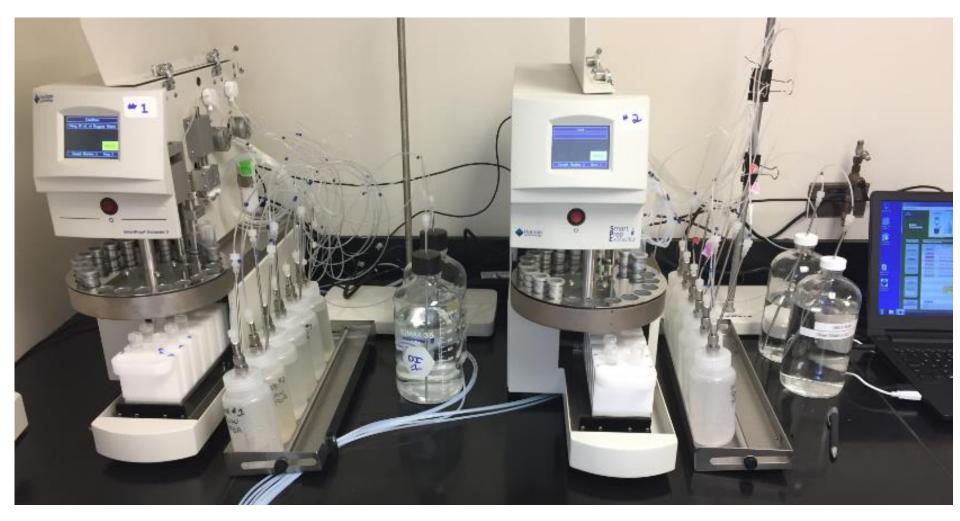
# **Analysis of PFAS**

- Sampling and precautions
- Multi-step, multi-day laboratory analysis
  - Sample preparation: longest part of analysis
  - Instrumental analysis: LC/MS/MS
- EPA Method 537
  - only approved method for water analysis
- Method 537 modified
  - anything goes



# Occurrence depends on sensitivity of testing methods

- UCMR3
  - EPA Method 537
  - Mandated sensitivity: Minimum Reporting Levels
  - Low occurrence




- Monitoring outside of UCMR3 program
  - "More sensitive" version of method
  - Lower MRLs...higher occurrence
- If you look harder...you will find more

JUA.



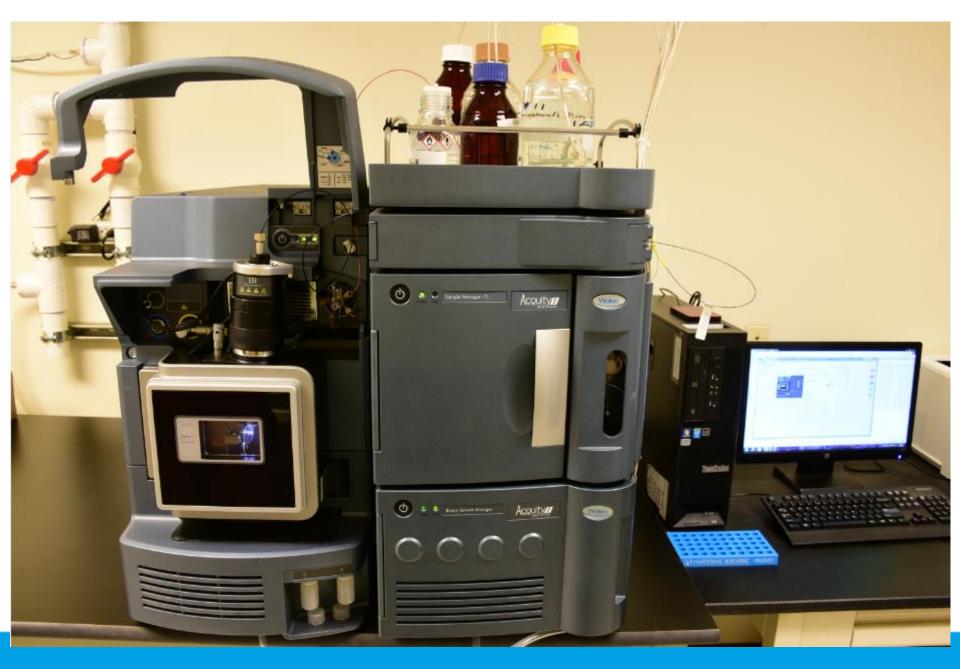
#### **PFAS Analysis: sample preparation**



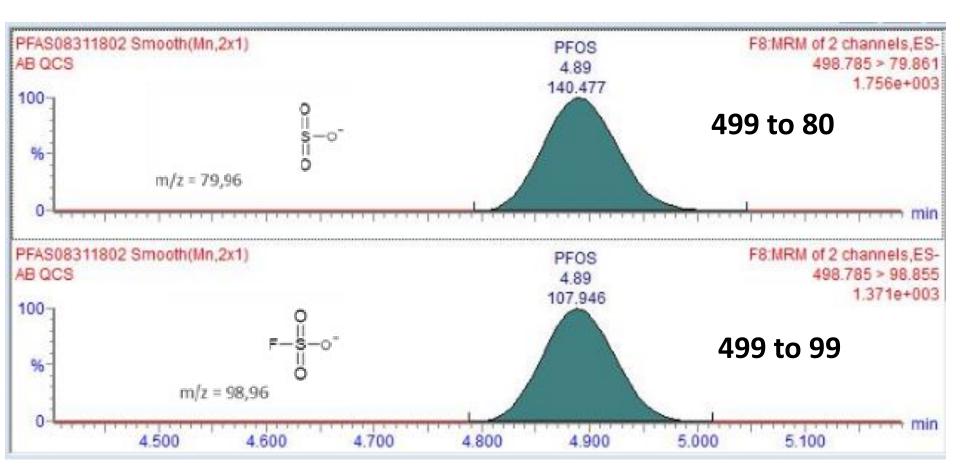

AQUA

#### **Solid Phase Extraction units**

#### **PFAS Analysis: sample preparation**





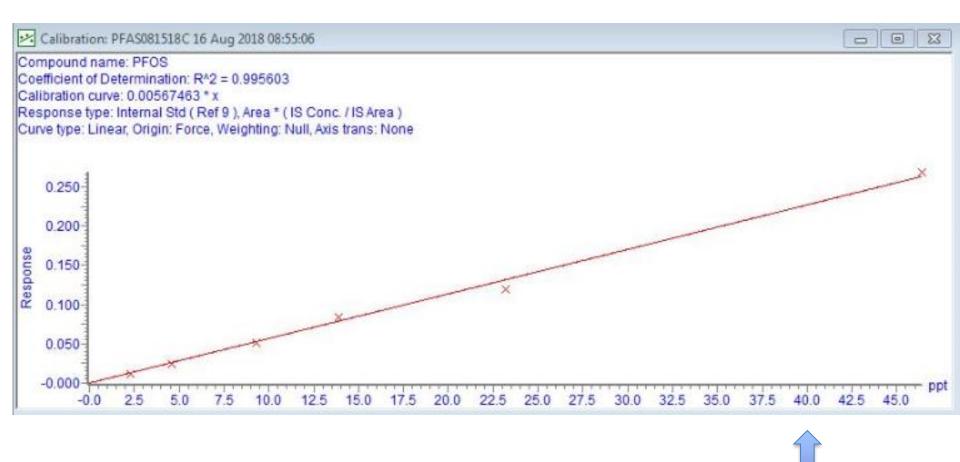




# evaporative concentration

#### Instrumental Analysis of PFAS: LC/MS/MS



#### Identification of PFOS: specific masses monitored






MRM chromatograms

#### PFOS calibration curve: 2.3 ng/L – 46 ng/L

**AOUA** 



MRL during UCMR3: 40 ng/L

# **PFAS analysis: summary**

- Time-consuming
- Costly
- Expensive instrumentation
- Few certified laboratories
- EPA Method 537: drinking water only
- Method 537, modified...wide variations
  - Analyte list
  - Reporting levels



#### **Chemistry determines:**

- Solubility
- Adsorption
- Volatility

- Ionization
- Fate
- Treatment
- Analysis

#### Perfluorooctane sulfonate (PFOS)

Tail 
$$F_3C-CF_2-CF_2-CF_2-CF_2-CF_2-CF_2-CF_2 - SO_3^-$$
 Head

#### Perfluorooctane carboxylate (PFOA)



#### **Compilation of environmental fate parameters Chemical / physical properties**



Environmental Fate and Transport for Per- and Polyfluoroalkyl Substances

# concawe

ENVIRONMENTAL SCIENCE FOR THE EUROPEAN REFINING INDUSTRY

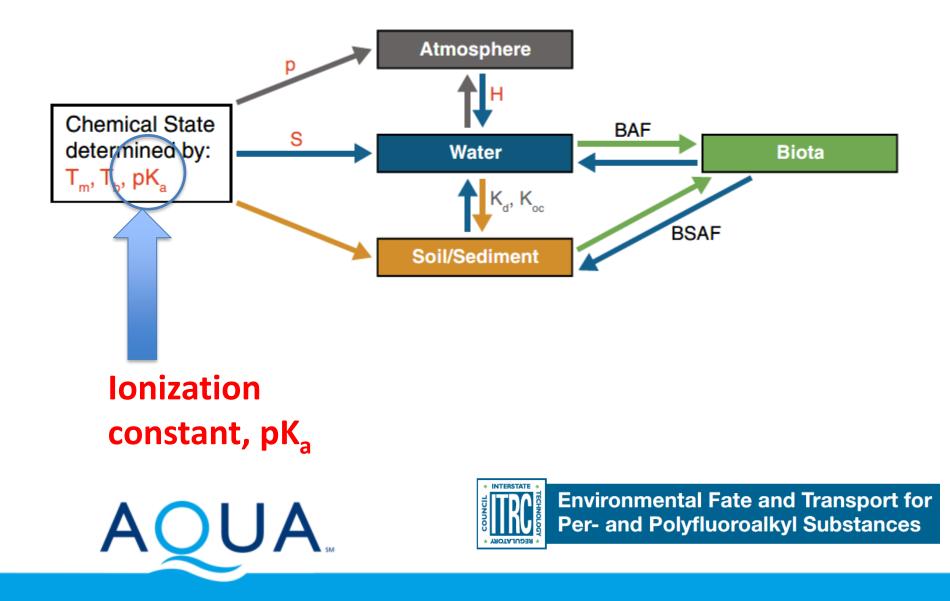
#### Understanding PFAS Fate and Transport

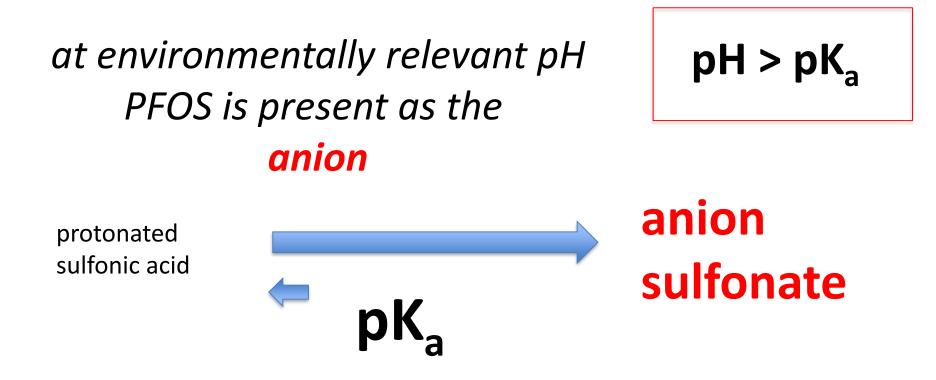


Dave Woodward, AECOM Erika Houtz, PhD, Arcadis Jeffrey Burdick, Arcadis November 30, 2016



NICOLE


Network for Industrially Contaminated Land in Europe


Environmental fate and effects of poly-

and perfluoroalkyl substances (PFAS)

report no. 8/16

#### **Environmental Fate of PFAS**





# Implications on fate & transport Implications on treatment

JA

PFOS: pK <sub>a</sub> -6 to -2.6

PFOA: pK a -0.16 to +3.8

#### **Chemical / Physical Data: incomplete and/or wide estimates**

| Acronym | Water<br>Solubility <sup>b</sup><br>(20 - 25 °C)<br>[g/L] | Melting<br>Point"<br>[°C] | Boiling<br>Point <sup>®</sup><br>[°C] | Vapor<br>Pressure <sup>6</sup><br>[Pa] | Henry-<br>Coefficient<br>[Pa·m¹·mol⁻¹] | log Kow <sup>e</sup><br>[•] | log K <sub>oc</sub><br>[L/kg] | Kd (pH 7) | Dissociation<br>Constant<br>(pKa) |
|---------|-----------------------------------------------------------|---------------------------|---------------------------------------|----------------------------------------|----------------------------------------|-----------------------------|-------------------------------|-----------|-----------------------------------|
| PFCAs   |                                                           |                           |                                       |                                        |                                        |                             |                               |           |                                   |
| PFBA    | Miscible                                                  | -17.5                     | 121                                   | 1307                                   | -                                      | 2.82                        | 1.88                          |           | -0.2 to 0.7                       |
| PFPeA   | 112.6                                                     |                           | 124.4                                 | 1057                                   |                                        | 3.43                        | 1.37                          |           | -0.06                             |
| PFHxA   | 21.7                                                      | 14                        | 143                                   | 457                                    |                                        | 4.06                        | 1.91                          |           | -0.13                             |
| PFHpA   | 4.2                                                       | 20                        | 175                                   | 158                                    |                                        | 4.67                        | 2.19                          | 0.4 - 1.1 | 0.15                              |
| PFOA    | 3.4 - 9.5                                                 | 37 - 60                   | 188 - 192                             | 4 - 1300                               | 0.04 - 0.09                            | 5.30                        | 1.31 - 2.35                   | 0 - 3.4   | -0.16 to 3.8                      |
|         |                                                           |                           |                                       |                                        |                                        |                             |                               |           |                                   |

#### PFOA: melting point 37 to 60 C

PFOA: pK <sub>a</sub> -0.16 to +3.8

Red font indicates parameters estimated with published equations. Calculated parameters are based on the neutral form of the substances (and not the conjugate base, which predominates for some PFAS at neutral pH) -- No data or not applicable.



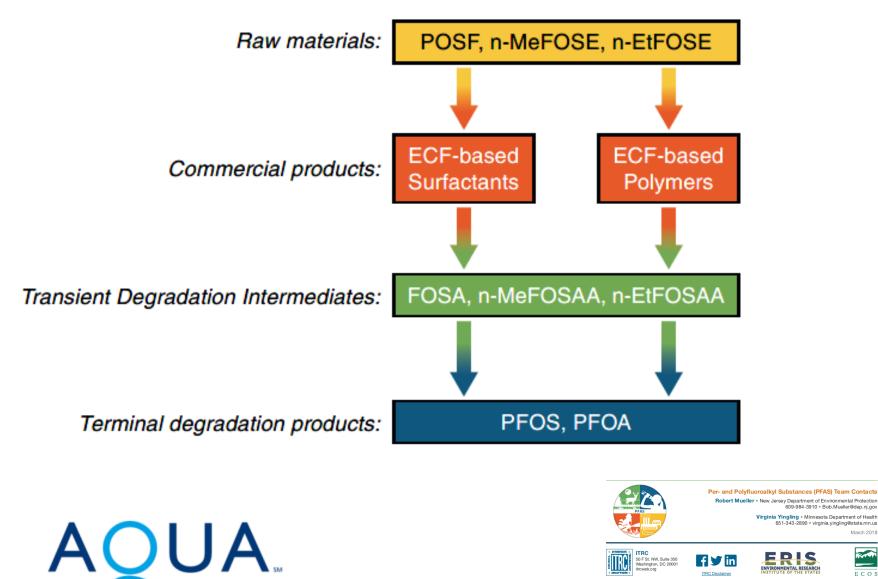


#### **Chemical / Physical Data: incomplete and/or wide estimates**

| Water<br>Solubility <sup>a</sup><br>(20 - 25 °C)<br>[g/L] | Melting<br>Point <sup>*</sup><br>[*C]                                     | Boiling<br>Point <sup>*</sup><br>[°C]                                                                                             | Vapor<br>Pressure <sup>6</sup><br>[Pa]                                                                                                                                                | Henry-<br>Coefficient<br>[Pa·m³·mol <sup>-1</sup> ]                                                                                                                                                                                                                          | log Kow <sup>a</sup><br>[-]                                                                                                                                                                                                                                                                                                                            | log K <sub>oc</sub><br>[L/kg]                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dissociation<br>Constant<br>(pKa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                           |                                                                           |                                                                                                                                   |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 46.2 - 56.6                                               | 76 - 84                                                                   | 211                                                                                                                               | 631                                                                                                                                                                                   |                                                                                                                                                                                                                                                                              | 3.90                                                                                                                                                                                                                                                                                                                                                   | 1.00                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -6.0 to -5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.3                                                       |                                                                           | -                                                                                                                                 | 58.9                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              | 5.17                                                                                                                                                                                                                                                                                                                                                   | 1.78                                                                                                                                                                                              | 0.6 - 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -6.0 to -5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                           |                                                                           |                                                                                                                                   |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.52 - 0.57                                               | 54                                                                        | > 400                                                                                                                             | 6.7                                                                                                                                                                                   | <2e-6 to 3e-4                                                                                                                                                                                                                                                                | 6.43                                                                                                                                                                                                                                                                                                                                                   | 2.5 - 3.1                                                                                                                                                                                         | 0.1 - 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -6.0 to -2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                           | Solubility <sup>*</sup><br>20 - 25 °C)<br>[g/L]<br>46.2 - 56.6<br>2.3<br> | Solubility*       Melting         20 - 25 °C)       Point*         [g/L]       [°C]         46.2 - 56.6       76 - 84         2.3 | Melting         Boiling           20 - 25 °C)         Point*         Point*           [g/L]         [°C]         [°C]           46.2 - 56.6         76 - 84         211           2.3 | Solubility <sup>a</sup><br>20 - 25 °C)<br>[g/L]         Melting<br>Point <sup>a</sup><br>[°C]         Boiling<br>Point <sup>a</sup><br>[°C]         Pressure <sup>a</sup><br>[Pa]           46.2 - 56.6         76 - 84         211         631           2.3           58.9 | Solubility <sup>b</sup><br>20 - 25 °C)<br>[g/L]         Melting<br>Point <sup>a</sup><br>[°C]         Boiling<br>Point <sup>a</sup><br>[°C]         Pressure <sup>b</sup><br>[Pa]         Henry-<br>Coefficient<br>[Pa-m <sup>3</sup> -mol <sup>-1</sup> ]           46.2 - 56.6         76 - 84         211         631            2.3           58.9 | Solubility*<br>20 - 25 °C)<br>[g/L]Melting<br>Point*<br>[°C]Boiling<br>Point*<br>[°C]Pressure*<br>[Pa]Henry-<br>Coefficient<br>[Pa·m*-mol*]Iog Kow*<br>[·]46.2 - 56.676 - 842116313.902.358.95.17 | Solubility <sup>2</sup><br>20 - 25 °C)<br>[g/L]         Meiting<br>Point <sup>a</sup><br>[°C]         Boiling<br>Point <sup>a</sup><br>[°C]         Pressure <sup>a</sup><br>[Pa]         Henry-<br>Coefficient<br>[Pa·m <sup>3</sup> ·mol <sup>-1</sup> ]         log Kow <sup>a</sup><br>[·]         log K <sub>oc</sub><br>[L/kg]           46.2 - 56.6         76 - 84         211         631          3.90         1.00           2.3           58.9          5.17         1.78 | Solubility <sup>a</sup><br>20 - 25 °C)<br>[g/L]         Melting<br>Point <sup>a</sup><br>[°C]         Boiling<br>Point <sup>a</sup><br>[°C]         Pressure <sup>b</sup><br>Point <sup>a</sup><br>[°C]         Henry-<br>Coefficient<br>[Pa]         log Kow <sup>b</sup><br>[-]         log K <sub>oc</sub><br>[L/kg]         Kd (pH 7)           46.2 - 56.6         76 - 84         211         631          3.90         1.00            2.3           58.9          5.17         1.78         0.6 - 3.2 |

PFOS: Henry's Law <2E-6 to 3E-4

PFOS:  $pK_a$  -6 to -2.6

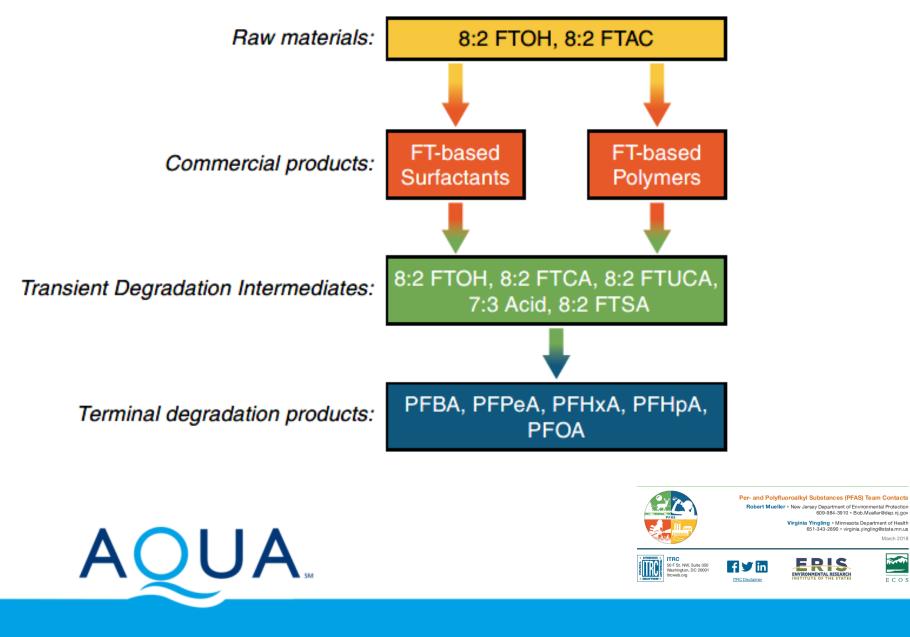

Red font indicates parameters estimated with published equations. Calculated parameters are based on the neutral form of the substances (and not the conjugate base, which predominates for some PFAS at neutral pH) -- No data or not applicable.





#### ECF Degradation Pathway Overview

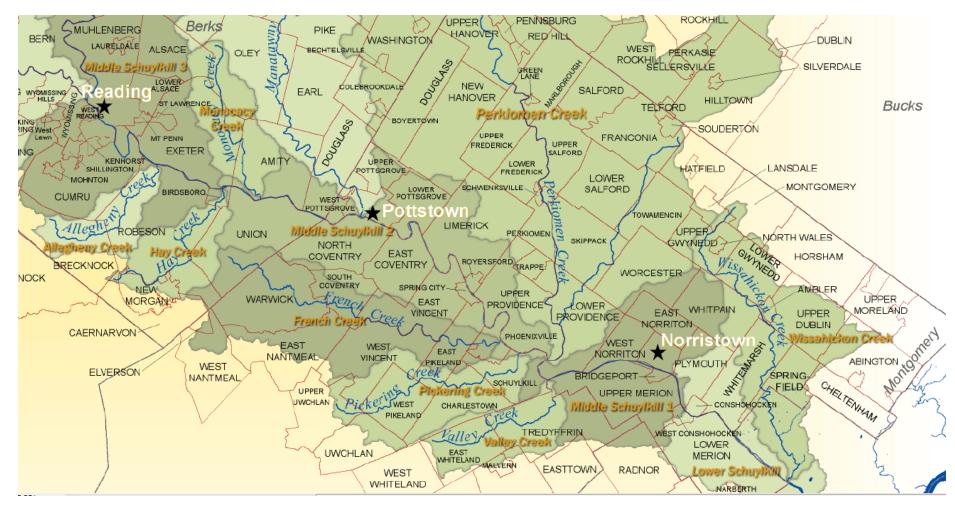
Example for perfluorooctane sulfonyl homologue




ECOS

ITRC Disclaime

#### Fluorotelomer Degradation Pathway Overview


Example for 8:2 fluorotelomer homologue



March 2018

ECOS

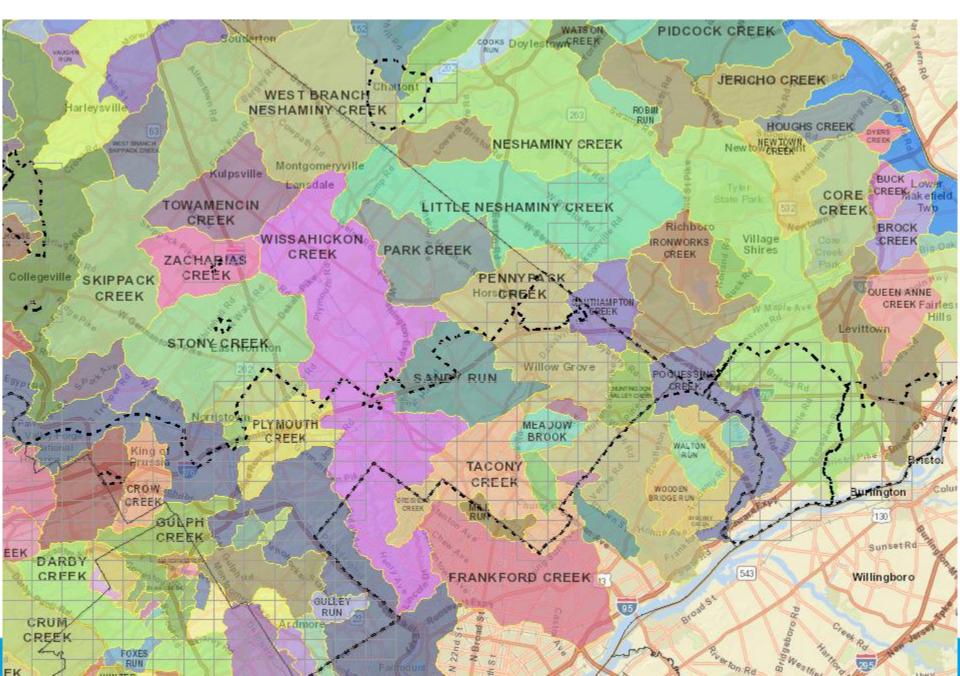
#### Schuylkill watershed map: UCMR3 and beyond



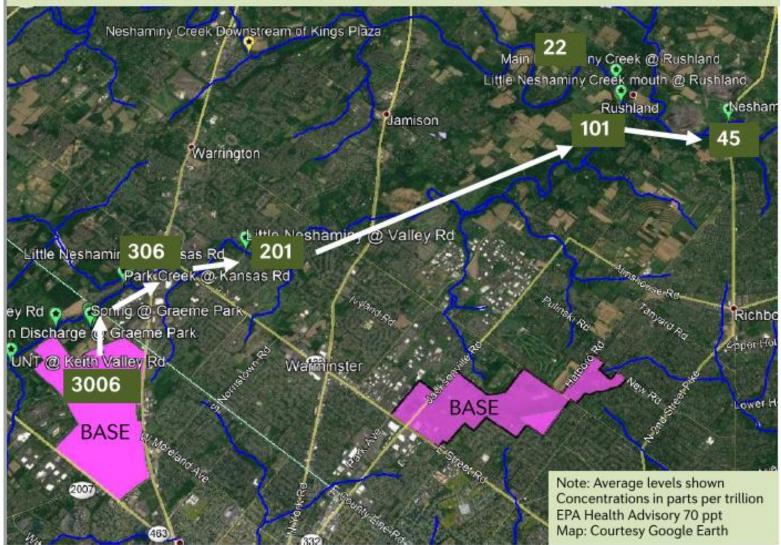




# **Occurrence in SEPA**


- UCMR3 data, detections at selected sites
- Post-UCMR3 monitoring, frequent detections
- Some obvious and known sources
- Widespread occurrence at low ng/L levels
  - Less obvious sources

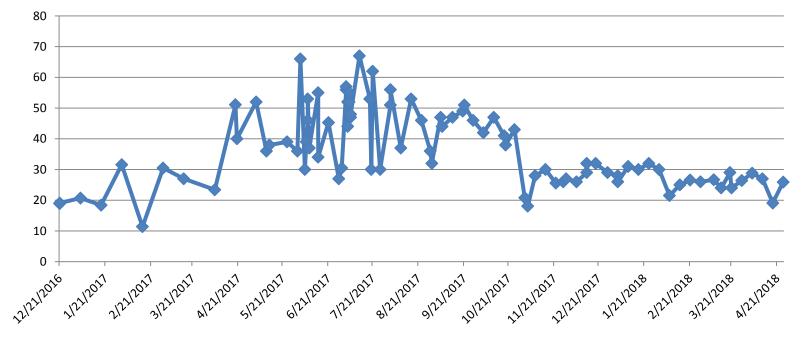
#### Significance?


Our ability to detect has far outpaced our ability to understand the significance



#### PFAS Case Study: watershed map




The Impact of Willow Grove Base Daily Discharges on PFOA + PFOS Levels in the Neshaminy, Little Neshaminy, and Park Creeks



AQUA

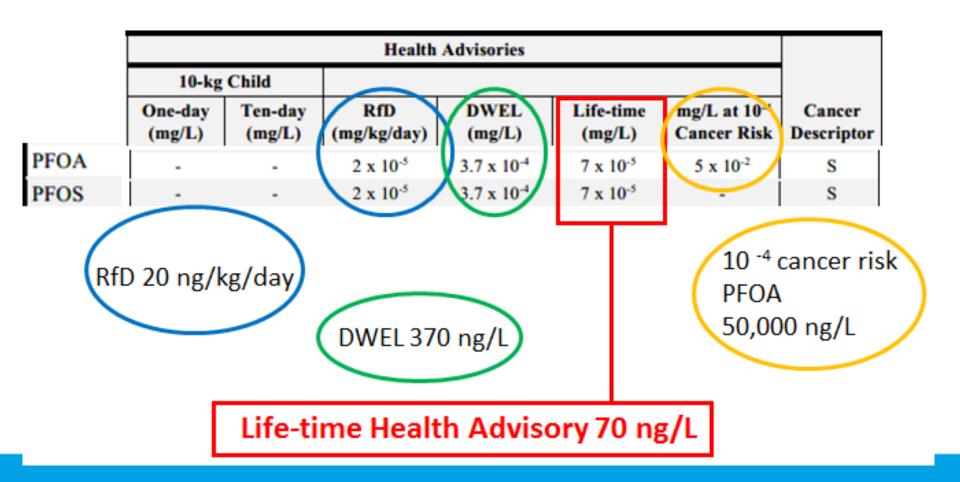
## **PFAS Monitoring, Neshaminy raw**

Combined PFOS + PFOA, ng/L



**JUA** 

|         | Ratio of PFOS to Combined |  |  |  |  |  |  |
|---------|---------------------------|--|--|--|--|--|--|
| Average | 0.64                      |  |  |  |  |  |  |
| Median  | 0.64                      |  |  |  |  |  |  |
| Minimum | 0.46                      |  |  |  |  |  |  |
| Maximum | 0.85                      |  |  |  |  |  |  |


# Regulatory Response: regulation of *unregulated* contaminants

- Evolving regulatory response since UCMR3
  - *de facto* Maximum Contaminant Level for PFOS and PFOA
    - Provisional Health Advisory: 200 + 400 parts per trillion
    - Lifetime Health Advisory: **70 parts per trillion**
- Potential standards / guidelines / MCLs
  - Uncertainty for water utilities, potential impacts
    - Treatment
    - Financial
    - Outreach to consumers





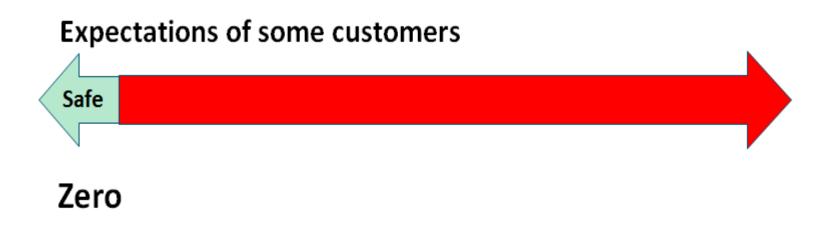
#### 2018 Edition of the Drinking Water Standards and Health Advisories Tables



# **Regulatory Response:** implications of Health Advisory

- Inconsistent implementation (nationally)
   *confusion*
- Certain EPA regions and states
  - Health Advisory ~ acute MCL
  - Actions & expectations from regulatory agencies




# de facto MCL

effectively by-passing regulatory process

# Perceived Risk. What is safe?

**Governmental agencies** 





# Key Challenge for Utilities Risk Communication / Outreach

- Risk Communication
  - Explanation and clarification of HA

Challenge of explaining topics not well understood by scientific community

- Being perceived as
  - Hero or villain?
  - Victim or perpetrator?
- Challenge of social media

UA.



Risk = Hazard + Outrage

## **Unregulated** just means no MCL

- No relationship to:
- media attention
- controversy

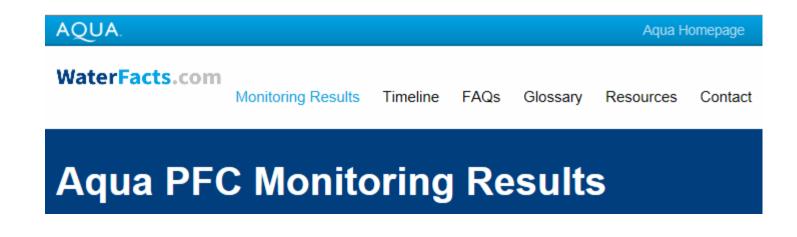


public expectations



**Risk = Hazard + Outrage** 

The Peter M. Sandman Risk Communication Website


Risk = Hazard + Outrage

Home Page Contents
What's New On Site
Most Recent Columns
About Peter M. Sandman
By Peter M. Sandman
In Other People's Words
Topical Indexes
Seminar Handouts
For More Help
Comments and Questions
Contact Information



(Photo courtesy of the NSW Minerels Council, Austr

#### **Outreach to Customers: website**



#### WaterFacts.com

Purpose: to communicate

- PFAS information
- results of PFAS monitoring



### How many PFAS are important?

- Aqua chose to focus on PFOS & PFOA
  - as per EPA Health Advisory
  - as per focus from PADEP
    - operating permits for GAC treatment
    - performance monitoring requirements
- Data posted to WaterFacts.com

#### Aqua PFOA/PFOS Monitoring

As a part of Aqua's commitment to ensuring the ongoing health and safety of our customers, we are proactively conducting regular testing of our water sources in areas of eastern Montgomery County impacted by groundwater contamination from PFAS originating from nearby military bases. Aqua routinely updates its findings for PFOA and PFOS and shares them here so customers can stay informed.

Additionally, Aqua continues to move forward with our plan to address PFAS in the anticipation of regulations. Our PFAS action plan employs a tiered approach, starting with systems of highest PFAS concentrations and evaluating the best actions. This plan includes:

- Evaluating the use of various sources to meet system demands coupled with their PFAS concentrations to understand the relative importance of each source in overall system operation;
- Making capital investments;
- · Reviewing and anticipating related operational expenses where necessary; and
- Adjusting or removing sources of supply.

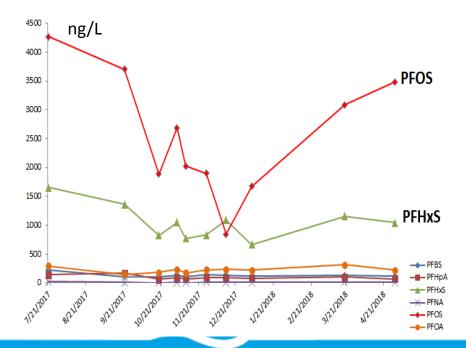
Developing this action plan for all sources is ongoing and may take some time due in part to the regional and interconnected nature of our systems, which require coordination with various local, state and federal stakeholders. As an industry leader, Aqua remains steadfast in its commitment to addressing this issue, and we look forward to the EPA and DEP issuing a rule that will help further guide our actions.

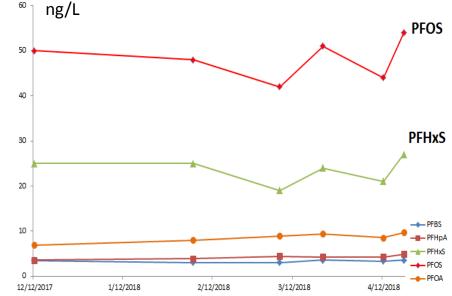
#### Enter your email address to receive updates.

Submit



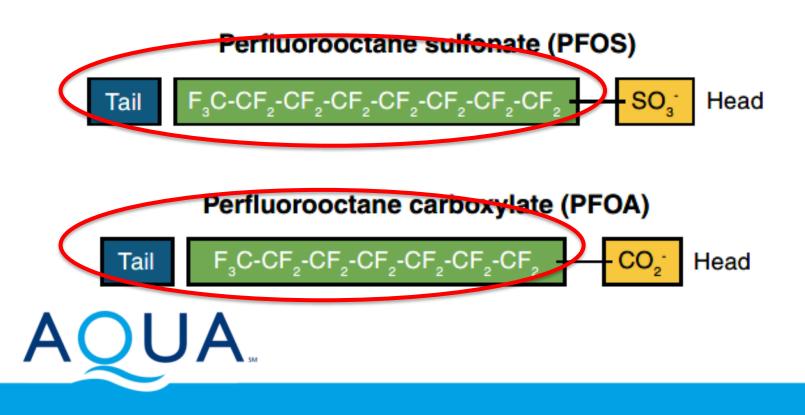



# Comparison of watershed site and groundwater supply **PFOS and PFHxS as portion of PFAS** <sub>6</sub>


61% PFOS; 27% PFHxS as portion of PFAS  $_6$ 

Surface water near source

55% PFOS; 27% PFHxS as portion of PFAS  $_6$ 


Groundwater site





### **Environmental Fate and Treatment Chemistry determines:**

- Solubility
- Adsorption
- Volatility
- Ionization



## Treatment

#### Adsorption on Granular Activated Carbon







Drinking Water Treatability Database

Contact Us

Search EPA: Go

- You are here: EPA Home
- Drinking Water Treatability Database
- · Per- and Polyfluoroalkyl Substances / Granular Activated Carbon

#### **EPA Water Treatability Database**

- GAC
- Biologically active GAC
- PAC
- Ion-exchange
- Membranes

#### <u>Per- and Polyfluoroalkyl Substances</u> / <u>Granular Activated Carbon</u>

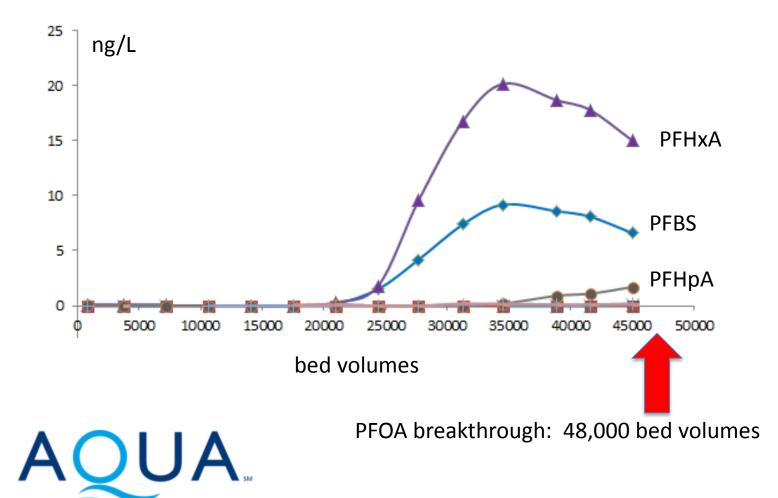


#### Treatment

|          |                  | Removal:        | <10%    | 10-90%       | > 90%                                    |         |         |         |         |                                                                                                    |
|----------|------------------|-----------------|---------|--------------|------------------------------------------|---------|---------|---------|---------|----------------------------------------------------------------------------------------------------|
|          |                  | M.W.<br>(g/mol) | AER     | COAG/<br>DAF | COAG/<br>FLOC/<br>SED/<br>G- or<br>M-FIL | AIX     | GAC     | NF      | RO      | MnO <sub>4</sub> ,<br>O <sub>3</sub> ClO <sub>2</sub> ,<br>Cl <sub>2</sub> ,<br>CLM, UV,<br>UV-AOP |
|          | PFBA             | 214             | assumed | assumed      |                                          |         |         |         |         |                                                                                                    |
|          | PFPeA            | 264             |         |              |                                          |         |         |         |         |                                                                                                    |
|          | PFHxA            | 314             |         |              |                                          |         |         |         |         |                                                                                                    |
|          | PFHpA            | 364             |         |              |                                          |         |         |         |         |                                                                                                    |
| E        | PFOA             | 414             |         |              |                                          |         |         |         |         |                                                                                                    |
|          | PFNA             | 464             |         | unknown      |                                          | assumed | assumed |         |         |                                                                                                    |
| Compound | PFDA             | 514             |         | unknown      |                                          | assumed | assumed |         |         |                                                                                                    |
| ដ        | PFBS             | 300             |         |              |                                          |         |         |         |         |                                                                                                    |
|          | PFHxS            | 400             |         |              |                                          |         |         |         |         |                                                                                                    |
|          | PFOS             | 500             |         |              |                                          |         |         |         |         |                                                                                                    |
|          | FOSA             | 499             | unknown | unknown      |                                          | unknown | assumed | unknown | assumed | unknown                                                                                            |
|          | N-MeFOSAA        | 571             | assumed | unknown      |                                          | assumed | assumed | assumed |         | unknown                                                                                            |
|          | <b>N-EtFOSAA</b> | 585             |         | unknown      |                                          | assumed | assumed | assumed |         | unknown <sup>a</sup>                                                                               |

AQUA

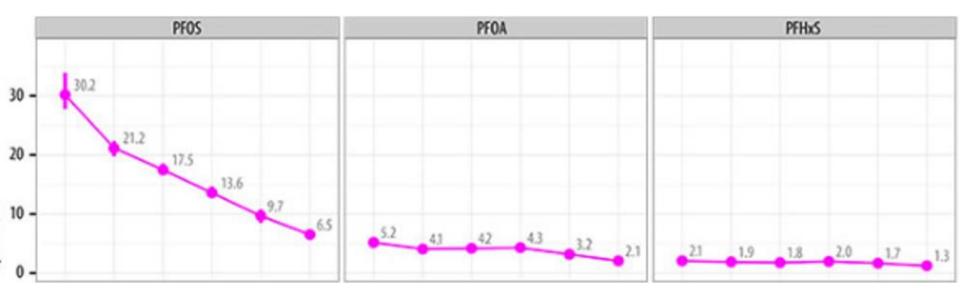



June 2018

an, The Water Research Foundation

Per- and Polyfluoroalkyl

Substances: Background Technical Information


# RSSCT, Neshaminy raw breakthrough before PFOA



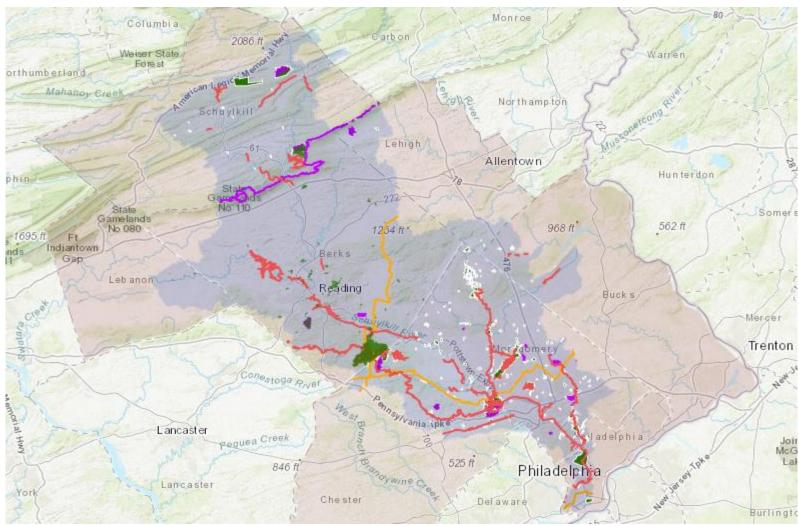
#### Fate within humans

### PFOS in blood serum, ug/L

decrease over time



## February 2015


Fourth National Report on Human Exposure to Environmental Chemicals





#### **Considering additional PFAS monitoring?**

Have a plan!



# Schuylkill watershed map



# Summary

- Chemistry determines...everything
  - Analysis
  - Environmental fate
  - Treatment
- Occurrence
- Regulatory uncertainty
- Risk communication and perception



## **Contact Information**

Charles D. Hertz, Ph.D. Director, Water Quality Aqua Pennsylvania, Inc. 762 W. Lancaster Ave. Bryn Mawr, PA 19010 <u>cdhertz@aquaamerica.com</u>

